miércoles, 8 de febrero de 2012

Placa Base

Planca Base:  Una placa madre típica en PCs consiste de un gran circuito impreso que incluye como mínimo:
Sockets, en donde uno o más CPUs son instalados.
Slots, en donde la memoria principal es intalada (generalmente módulos DIMMs con memoria DRAM).
Un chipset: Northbridge y Southbridge.
Chips de memoria no volátil (generalmente Flash ROM), que contiene la BIOS o el firmware del sistema.
Un reloj que produce señales de reloj para sincronizar varios componentes.
Bahías o zócalos para tarjetas de expansión.
Conectores de energía para distribuirla entre los distintos dispositivos de la computadora. La electricidad se recibe desde la fuente eléctrica.
Puertos de conexión para dispositivos como los PS/2 para el ratón y el teclado, o puertos USB.
También algunas placas madres incluyen dispositivos de enfriamiento como ventiladores.
Muchas placas madres incluyen dispositivos que antes sólo existían como placas o tarjetas separadas y debían conectarse a la placa madre empleando zócalos libres en la misma. Por ejemplo, muchas placas madres vienen integradas con placa de sonido, de aceleración de video, módem, etc.


Nº 1: Es donde va ubicado el procesador, se le conoce como socket, en este caso es el socket 939.

Nº 2: Estos son los zocalos de memoria, los cuales pueden ser ddr o ddr2, ya sea de 256mb, 512mb, 1gb, etc...

Nº 3: Chipset se encarga principalmente de llevar a cabo las labores que le indica el micropocesador.

Nº 4: Conector ATX, este conector es el que va con la fuente de poder, y es el encargado de dar energia a la placa madre.

Nº 5: Estos son los conectores ide, los cuales son para conectar ya sea los lectores, grabadores, DVDRW, disketera, Discos Duros ide, etc...

Nº 6: Pila de litio, es la que esta encargada de mantener al dia la informacion existente, como es mantener actualizada la hora, fecha, etc. 

Nº 8: Este es el chipset Nvidia, el cual esta encargado de los graficos y lo que tenga que ver con el video.

Nº 9: Conector Pcie16, esta es la nueva tecnologia de video llamada Pci express, y este es el conector correspondiente para las tarjetas de video de tipo pcie.

Nº 10: Frontal Panel, estos pines son los encargados de lo que es la luz de encendido, de reinicio o reset y de la bocina o beep que suena en el pc.

Nº 11: Bios, esta es la encargada de todo lo que es dispositivos de entrada y salida, su nombre es BIOs ( basic input output system) que en castellano es sistema basico de entrada y salida.

Nº 12: Conectores sata, estos son los conectores para el nuevo standard de discos duros conocidos como sata2.

Nº 13: Jumper de la bios, se encarga de hacer cargar y de borrar la bios, en otras palabras al estar en el pin 1-2 significa estado activo, por lo que la bios carga con los valores por default, y al estar en los pines 2-3 significa clear osea, resetea la bios.

Nº 14: Sonido integrado, aqui estan las entradas, salida y microfono, ya que el sonido es de 5.1 canales de audio, y es integrado con la placa.

Nº 15: Red, aqui se encuentra el conector de red, ya que esta placa tambien cuenta con tarjeta de red integrada.

Nº 16: Puertos usb, son conectores de alta velocidad, que nos sirven para conectar ya sea nuestros pendrives o cualquer dispositivo externo al pc, y que claro tenga conexion de tipo usb ( puede ser 1.1 o 2.0, en la actualidad es 2.0)

Nº 17: Conectores paralelos, ya sea para los joystik, impresoras, etc.

Nº 18: Conectores ps/2, para el mouse y teclado, los cuales estan con color, el verde es para el raton o mouse y el morado para el teclado.


Tipos de Placas Base: 

Baby AT: son las que han reinado durante varios años, son típicas de los primeros ordenadores clónicos y han perdurado hasta la aparición de los Pentium, pues tenían una gran maraña de cables y carecían de una ventilación idónea, y dejaban entrever su carencia a la hora de conectar otros periféricos. Son reconocibles por el conector del teclado, clavija de formato DIN ancho. 


ATX: Son las placas estándar del mercado actual, tienen una mejor ventilación, menos cables, el teclado y el ratón son de clavija mini-DIN y lleva más conectores, sobre todo los modernos USB y FireWire (cable de fuego).



LPX: Similares a las Baby-AT, pero los slots de expansión no se encuentran sobre la placa base, sino en un conector especial en el que están pinchadas, la riser card. Las tarjetas van paralelas a la placa bases y su único inconveniente es que la riser card no suele tener más de dos o tres slots de expansión.


Diseño propios de las marcas (IBM, Compaq, Hewlett-Packard), que éstos las adaptan a sus necesidades, con el consiguiente inconveniente a la hora de la ampliación del ordenador.

Formatos:


Socket: Un socket (enchufe), es un método para la comunicación entre un programa del cliente y un programa del servidor en una red. Un socket se define como el punto final en una conexión. Los sockets se crean y se utilizan con un sistema de peticiones o de llamadas de función a veces llamados interfaz de programación de aplicación de sockets (API, application programming interface).
Un socket es también una dirección de Internet, combinando una dirección IP (la dirección numérica única de cuatro partes que identifica a un ordenador particular en Internet) y un número de puerto (el número que identifica una aplicación de Internet particular, como FTP, Gopher, o WWW).
Chipset: El chipset es el conjunto de chips que se encarga de controlar algunas funciones concretas del ordenador, como la forma en que interacciona el microprocesador con la memoria o la caché, o el control de los puertos y slots ISA, PCI, AGP, USB...
El chipset de una placa base es un conjunto de chips cuyo número varía según el modelo y que tiene como misión gestionar todos los componentes de la placa base tales como el micro o la memoria; integra en su interior las controladoras encargadas de gestionar los periféricos externos a través de interfaces como USB, IDE, serie o paralelo. El chipset controla el sistema y sus capacidades, es el encargado de realizar todas las transferencias de datos entre los buses, la memoria y el microprocesador, por ello es casi el "alma" del ordenador. Dentro de los modernos chipset se integran además distintos dispositivos como la controladora de vídeo y sonido, que ofrecen una increíble integración que permite construir equipo de reducido tamaño y bajo coste.
Una de las ventajas de disponer de todos los elementos que integra el chipset, agrupados dentro de dos o tres chips, es que se evitan largos períodos de comprobación de compatibilidades y funcionamiento. Como inconveniente nos encontramos con que el chipset no se puede actualizar, pues se encuentra soldado a la placa.
Antes estas funciones eran relativamente fáciles de realizar y el chipset tenía poca influencia en el rendimiento del ordenador, por lo que éste era un elemento poco importante o influyente a la hora de comprar una placa base. Pero los nuevos microprocesadores, junto al amplio espectro de tecnologías existentes en materia de memorias, caché y periféricos que aparecen y desaparecen continuamente, han logrado aumentar la importancia del chipset.  



Ranuras Presentes: Hay ranuras sobre la placa madre donde el procesador y el RAM, los dispositivos de IDE como el Disco Duro, Manejadors Ópticos y la Unidad de disquete pueden ser enchufados. La placa madre también contiene los puertos para los naipes de driver como la tarjeta de red de área local, Tarjeta de Vídeo, Tarjeta de Sonido etc.


Monitor CRT O TRC

Monitor CRT O TRC: En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luz electrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electrones viajar desde el terminal negativo al positivo. El yugo del monitor, una bobina magnética, desvía la emisión de electrones repartiéndolo por la pantalla, para pintar las diversas líneas que forman un cuadro o imagen completa.
Los monitores monocromos utilizan un único tipo de fósforo pero los monitores de color emplean un fósforo de tres colores distribuidos por triadas. Cada haz controla uno de los colores básicos: rojo, azul y verde sobre los puntos correspondientes de la pantalla.
A medida que mejora la tecnología de los monitores, la separación entre los puntos disminuye y aumenta la resolución en pantalla (la separación entre los puntos oscila entre 0.25mm y 0.31mm). Loa avances en los materiales y las mejoras de diseño en el haz de electrones, producirían monitores de mayor nitidez y contraste. El fósforo utilizado en un monitor se caracteriza por su persistencia, esto es, el periodo que transcurre desde que es excitado (brillante) hasta que se vuelve inactivo(oscuro).

                     

Monitor LCD

Monitor LCD: El cristal líquido es un tipo de material que tiene unas propiedades especiales que le hacen vivir en la frontera entre los líquidos y los sólidos. Sus moléculas pueden orientarse cuando se las somete a una tensión eléctrica. Esta propiedad se utiliza para construir pantallas en las que se visualiza información.
Las sustancias utilizadas para fabricar cristales líquidos son muy variadas: benzoato de colesterol, vinilo, kevlar, polipéptidos, etc.
Las primeras pantallas de cristal líquido se utilizaron en relojes, calculadoras e instrumentos de medida. Además de precisar de poco espacio, ya que su grosor es muy pequeño, también consumen poca electricidad cuando funcionan.
El cristal líquido no emite la luz que podemos ver en estas pantallas. Su función es dejar pasar, o no, la luz a través suyo.
En las pantallas de los relojes de pulsera o de las calculadoras, la luz exterior atraviesa la pantalla por un primer filtro polarizador. El plano de oscilación de esta luz polarizada es girado por los cristales líquidos, lo que le permite atravesar el segundo filtro polarizador (Que se encentra girado 90º con respecto al primero). La luz que atraviesa este segundo filtro se refleja en una capa reflectora interior y vuelve a salir al exterior dando una tonalidad clara a esa zona de la pantalla. Si se aplica una tensión al cristal líquido este se orienta, perpendicularmente a la pantalla, con lo que ya no gira el plano de oscilación de la luz polarizada incidente. Por esto mismo la luz no puede atravesar el segundo filtro polarizador y llegar a la capa reflectora interior y por eso esa zona de la pantalla permanece oscura (Formando letras y números).
En las pantallas de televisión LCD, para conseguir una mayor luminosidad, se ilumina desde atrás con unos tubos fluorescentes. Los píxeles a donde se hace llegar una tensión eléctrica permanecen oscuros y el resto iluminados. Cada píxel esta dividido en tres zonas verde azul y roja, para poder conseguir con su suma todo tipo de colores.
Para poder controlar eléctricamente cada píxel se habrían de conectar todos ellos a dos puntos de contacto, lo que supone una gran cantidad de contactos. Por ello se utiliza un sistema de multiplexado que reduce mucho el número de conexiones.

Impresora

Impresora Láser: La impresión láser se basa enteramente en la interacción electrostática, el mismo fenómeno que produce que un plástico atraiga trozos de papel tras ser frotado con una prenda de fibra.
Para comprender la impresión electrostática, basta saber que las cargas eléctricas pueden ser positivas o negativas, y que las cargas de signo opuesto se atraen, mientras que las cargas de igual signo se repelen.

En primer lugar, se carga negativamente toda la superficie de un tambor fotosensible, del tamaño de una hoja. Acto seguido, se hace avanzar el tambor línea a línea, y un láser recorre horizontalmente cada línea, ayudado por un espejo giratorio (en otras palabras, se produce un proceso de barrido). El láser incide en los puntos donde la tinta se deberá fijar, invirtiendo la carga (que ahora será positiva). El láser se desconecta en los lugares donde no deberá aparecer tinta (quedando con carga negativa). Por tanto, tras recorrer todo el tambor, solo habrá cargas positivas en los puntos donde deberá depositarse tinta, mientras que el resto (lo que constituirá el fondo blanco del papel) queda cargado negativamente. En otras palabras, se ha conseguido crear una imagen electrostática de la hoja a imprimir, mediante cargas positivas sobre un fondo de cargas negativas. 

 

Impresora de Matriz de Punto: En el sentido general, muchas impresoras se basan en una matriz de píxeles o puntos que, juntos, forman la imagen más grande. Sin embargo, el término matriz o de puntos se usa específicamente para las impresoras de impacto que utilizan una matriz de pequeños alfileres para crear puntos precisos. Dichas impresoras son conocidas como matriciales. La ventaja de la matriz de puntos sobre otras impresoras de impacto es que estas pueden producir imágenes gráficas además de texto. Sin embargo, el texto es generalmente de calidad más pobre que las impresoras basadas en impacto de tipos.
Algunas sub-clasificaciones de impresoras de matriz de puntos son las impresoras de alambre balístico y las impresoras de energía almacenada.
Las impresoras de matriz de puntos pueden estar basadas bien en caracteres o bien en líneas, refiriéndose a la configuración de la cabeza de impresión.
Las impresoras de matriz de puntos son todavía de uso común para aplicaciones de bajo costo y baja calidad como las cajas registradoras. El hecho de que usen el método de impresión de impacto les permite ser usadas para la impresión de documentos autocopiativos como los recibos de tarjetas de crédito, donde otros métodos de impresión no pueden utilizar este tipo de papel. Las impresoras de matriz de puntos han sido superadas para el uso general en computación.

                            


Impresora de Inyección de Tinta:  Es un dispositivo electromecánico, que tiene la función de recibir información digital procedente de la computadora; para por medio de tinta líquida, plasmar la información en un medio físico. Generalmente utiliza un cartucho con tinta negra y otro con 3 colores integrados: cian, magenta y amarillo; aunque actualmente la tendencia es que cada color sea independiente. La impresora de inyección de tinta crea los colores a partir de la mezcla de los 4 colores anteriores. Los dispositivos de los que actualmente también puede recibir directamente datos son discos duros portátiles ó memorias USB.


martes, 7 de febrero de 2012

UNIDAD DE CD

CD ROM:


Esta unidad sirve para leer los discos compactos (CD-ROM) en los que vienen casi todos los programas y para escuchar CD de música en el PC. La velocidad de una unidad de CD ROM depende dos factores: la tasa de transferencia de datos (lo más importante y el único dato que le mencionarán) y el tiempo de acceso.

CD RW:

Es la que permite en un disco compacto, como el CD ROM o el CD de música, escribir y guardar información; tiene las ventajas tradicionales de esos discos, como durabilidad y una gran capacidad de almacenamiento de datos (650 MB). Una unidad de CD RW permite escribir información en dos tipos de discos: CD grabables (CD R por CD recordable) y CD re escribible (CD RW por CD Rewritable) La principal diferencia es que un CD R .


DVD:  El DVD es un nuevo tipo de disco compacto que ofrece una capacidad de almacenamiento de datos muy superior a la de un CD ROM; mientras que un CD ROM o cualquier otro tipo de CD convencional puede guardar 650 MB de datos, a un DVD le cabe entre 4,7 y 17 GB o sea, entre 7 y 265 veces más. Debido a ello, las unidades de CD ROM serán desplazadas paulatinamente por las unidades de DVDROM eso ya ocurre en segmentos altos en los Estados Unidos.

DVDR:  es un disco óptico en el que se puede grabar o escribir datos con mucha mayor capacidad de almacenamiento que un CD-R, normalmente 4.7 GB (en lugar de los 700 MB de almacenamiento estándar de los CD), aunque la capacidad delestándar original era 4,37 GBPioneer también ha desarrollado una versión de doble capa con 8,5 GB, que apareció en el mercado en 2005. Un DVD-R sólo puede grabarse una vez, mientras que un DVD-RW es regrabable.

DVDRW: Un DVD-RW (Menos Regrabable) es un DVD regrabable en el que se puede grabar y borrar la información varias veces. La capacidad estándar es de 4,7 GB.
Fue creado por Pioneer en noviembre de 1999 y es el formato contrapuesto al DVD+RW, apoyado además por Panasonic, Toshiba, Hitachi, NEC, Samsung, Sharp, Apple Computer y el DVD Forum.

BLURAY : Blu-ray disc también conocido como Blu-ray o BD, es un formato de disco óptico de nueva generación de 12 cm de diámetro (igual que el CD y el DVD) para vídeo de gran definición y almacenamiento de datos de alta densidad. Su capacidad de almacenamiento llega a 25 GB por capa, aunque Sony y Panasonic han desarrollado un nuevo índice de evaluación (i-MLSE) que permitiría ampliar un 33% la cantidad de datos almacenados,1 desde 25 a 33,4 GB por capa. Aunque otros apuntan que el sucesor del DVD no será un disco óptico, sino la tarjeta de memoria. No obstante, se está trabajando en el HVD o Disco holográfico versátil con 3,9 TB. El límite de capacidad en las tarjetas de formato SD/MMC está ya en 128 GB, teniendo la ventaja de ser regrabables al menos durante 5 años.

HD DVD: HD DVD (por las siglas de High Density Digital Versatile Disc), traducido al español como disco digital versátil de alta densidad, fue un formato de almacenamiento óptico desarrollado como un estándar para el DVD de alta definición por las empresas Toshiba, Microsoft yNEC, así como por varias productoras de cine. Puede almacenar hasta 30 GB.
Este formato finalmente sucumbió ante su inmediato competidor, el Blu-ray, por convertirse en el estándar sucesor del DVD. Después de la caída de muchos apoyos de HD DVD, Toshiba decidió cesar de fabricar más reproductores y continuar con las investigaciones para mejorar su formato.

DISCO DURO

ESTRUCTURA FISICA :

Dentro de un disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 ó 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal (dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos..




CALCULO DE LA CAPACIDAD: para saber la capacidad de un disco duro multiplicas los la cantidad de cilindros por la cantidad de sectores por la cantidad de cabezales que tenga y eso te da la cantidad de clusters que tiene tu disco duro  de hay multiplicas la cantidad de bytes que soportan los clusters en modo lba.




CLASIFICACION DE LOS DISCOS DUROS




IDE: es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.


INTERFACES MAS UTILIZADAS 



ATA-1, la primera versión.
ATA-2, soporta transferencias rápidas en bloque y multiword DMA.
ATA-3, es el ATA-2 revisado y mejorado. Todos los anteriores soportan velocidades de 16 MB/s.
ATA-4, conocido como Ultra-DMA o ATA-33, que soporta transferencias en 33 MB/s.
ATA-5 o Ultra ATA/66, originalmente propuesta por Quantum para transferencias en 66 MB/s.
ATA-6 o Ultra ATA/100, soporte para velocidades de 100 MB/s.
ATA-7 o Ultra ATA/133, soporte para velocidades de 133 MB/s.
ATA-8 o Ultra ATA/166, soporte para velocidades de 166 MB/s.




SCSI:   es una interfaz estándar para la transferencia de datos entre distintos dispositivos del bus de la computadora. Algunos profesionales lo castellanizan como escasi oescosi, por la pronunciación en inglés de su sigla, otros por el contrario prefieren deletrearlo.




SCSI 1. Bus de 8 bits. Velocidad de transmisión de datos a 5 MBps. Su conector genérico es de 50 pins (conector Centronics) y baja densidad. La longitud máxima del cable es de seis metros. Permite hasta 7 dispositivos (incluida la controladora), identificados por las direcciones 0 a 6.




SCSI 2.!


  • Fast. Con un bus de 8, dobla la velocidad de transmisión (de 5 MBps a 10 MBps). Su conector genérico es de 50 pins y alta densidad. La longitud máxima del cable es de tres metros. Permite hasta 7 dispositivos (incluida la controladora), identificados por las direcciones 0 a 6.


  • Wide. Dobla el bus (pasa de 8 a 16 bits). Su conector genérico es de 68 pins y alta densidad. La longitud máxima del cable es de tres metros. Permite hasta 16 dispositivos (incluida la controladora), identificados por las direcciones 0 a 15.
    • SCSI 3.

    .1 SPI (Parallel Interface o Ultra SCSI).

    Ultra. Dispositivos de 16 bits con velocidad de ejecución de 20 MBps. Su conector genérico es de 34 pines de alta densidad. La longitud máxima del cable es de 10 cm. Admite un máximo de 15 dispositivos. También se conoce como Fast 20 o SCSI-3.

    Ultra Wide. Dispositivos de 16 bits con velocidad de ejecución de 40 MBps. Su conector genérico es de 68 pins y alta densidad. La longitud máxima del cable es de 1,5 metros. Admite un máximo de 15 dispositivos. También se conoce como Fast SCSI-3.

    Ultra 2. Dispositivos de 16 bits con velocidad de ejecución de 80 MBps. Su conector genérico es de 68 pines y alta densidad. La longitud máxima del cable es de doce metros. Admite un máximo de 15 dispositivos. También se conoce como Fast 40.




    MEMORIA ROM


    Memoria ROM

    Es una memoria de sólo lectura (Read Only Memory) en la que no se puede escribir como la RAM, y que guarda la información almacenada en ella incluso después de apagar el equipo. También se puede acceder a este tipo de memoria de forma aleatoria.
    La configuración de la BIOS de la placa base, asi como la configuración de los distintos dispositivos instalados en el equipo se guarda en memoria ROM. A la información de los dispositivos escrita en la memoria ROM de cada uno de ellos se llama FIRMWARE.
    La ROM estándar se escribe durante el proceso de fabricación de un componente y nunca puede cambiarse. Sin embargo existen algunos tipos de memoria ROM que pueden cambiarse: 


    EPROM:(Erasable Programmable Read-Only Memory) se borra exponiendo la ROM a una luz ultravioleta. La usan los fabricantes para poder correjir errores de última hora en la ROM. El usuario no puede modificarla.


    EEPROM:(Electrically Erasable Programmable Read-Only Memory) se borra y se puede reprogramar por medio de una carga eléctrica, pero sólo se puede cambiar un byte de información de cada vez.




    DIFERENCIA DE BIOS , SETUP Y CMOS 


    BIOS: Es un sistema sistema básico de entrada/salida Basic Input-Output System (BIOS) un código de interfaz que localiza y carga el sistema operativo en la RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido.

    SETUP :Significa "Instalación". Aparece cuando deseas modificar la BIOS. Un programa Setup es un programa para instalar otro programa.

    CMOS:  es una tecnología utilizada para crear circuitos integrados . Los chips CMOS consumen menos potencia que aquellos que usan otro tipo de transistor.